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Introduction
In a recent symposium in Political Analysis Grant and Lebo 
(2016) and Lebo and Grant (2016) raise a number of con-
cerns with use of the general error correction model 
(GECM). In response, Enns et al. (2016) have contributed 
“Don’t jettison the general error correction model just yet: 
A practical guide to avoiding spurious regression with the 
GECM.” Enns et al. are prolific users of the GECM; sepa-
rately or in combination they have authored 18 publications 
that rely on the model, often relying on significant error 
correction coefficients to claim close relationships between 
political variables. In “Don’t jettison…” the authors narrow 
the gap of disagreement between themselves and Grant and 
Lebo. However, as they attempt to reconcile old findings 
with new insights, Enns et al. inadvertently make clear an 
essential point: using the GECM is more complicated in 
practice than researchers realize. Despite their extensive 
experience, Enns et al. are still misinterpreting the infer-
ences provided by the error correction coefficient and as a 
result are overstating relationships between variables.

In this paper we explain where we agree with and 
diverge from Enns et al.. In short, there is agreement that: 
(a) with stationary data (I(0)) the GECM’s parameters have 
different meaning and the strong possibility of user error 
makes the model a poor choice; and (b) the GECM is more 

easily interpretable with all unit root (I(1)) and jointly coin-
tegrated data so long as one uses the correct critical values. 
Many disagreements remain. In particular, despite the 
weaknesses of the Dickey and Fuller (1979) stationarity 
test, Enns et al. treat the test’s results as perfectly reliable 
for identifying unit roots. We show both the high frequency 
of the Dickey–Fuller (DF) test misclassifying series as unit 
roots and the consequences for using such series in the 
GECM. Further, Enns et al. advocate stretching the use of 
“unit root rules” into other data scenarios but ignore the 
possible consequences of doing so.

We also explore differences in our understanding of the 
data used in Kelly and Enns (2010) and Casillas et al. 
(2011). Enns et al. argue that the data and analyses in those 
papers and potentially many others fit neatly into the unit 
root rules category. We maintain that Enns et al. are likely 
misclassifying the series in those papers as unit roots which 
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can lead to over-stated claims of error correction. We begin 
with the points of agreement between Enns et al. (2016) 
and Grant and Lebo (2016).

Points of agreement

The GECM can work when all the series contain 
unit roots and are jointly cointegrated
The GECM has several representations but the one most 
commonly used by political scientists is DeBoef and 
Keele’s (2008) Equation 5:

 ∆ ∆Y Y X Xt t t t t= 0 1
*

1 0
*

1
*

1α α β β+ + + +− − �  (1)

Enns et al. and Grant and Lebo agree with the literature 
in econometrics that when both X  and Y  contain unit 
roots – defined as yt  = 1* 1yt−  + �t  – and are cointegrated, 
the combination of Yt−1  and Xt−1  is stationary and the 
equation is balanced. In such cases Equation 1 has accept-
able Type I error rates for all its parameters and is readily 
interpretable.

In particular, there is agreement that when both X  and 
Y  contain unit roots:

1.   functions as a test of cointegration between X  
and Y and measures the rate of error correction, 
theoretically bounded between 0 and -1.

2. The critical values for αl1
*

 are non-standard, more 
negative than with the normal distribution, vary 
with the number of Xs, vary with the length of the 
data, and can be calculated as “MacKinnon values” 
following Ericsson and MacKinnon (2002).

3. When αl1
*

’s t -statistic does not surpass the 
MacKinnon critical value (CV) there is no cointe-
gration. Since Yt−1  and Xt−1  are not in combina-
tion stationary there is unresolved autocorrelation 
on the right-hand-side and the model’s estimates 
should not be used.

This is progress. Grant and Lebo (2016) point out in their 
table 2 how frequently a researcher might mistakenly 
conclude error correction is present if she were to incor-
rectly use the normal distribution to evaluate α1

*  with 
unit root series. Enns et al. recognize this when they say: 
“Thus, the bottom row of Grant and Lebo’s Table 2 
should be read as evidence of the importance of using the 
correct MacKinnon critical values when testing for coin-
tegration, not evidence of spurious relationships with the 
GECM” (Enns et al., 2016: 3). To be sure, Grant and 
Lebo’s table 2 is one of many of their analyses intended 
to demonstrate what happens if – as Kelly and Enns 
(2010) and Casillas et al. (2011) do – one uses common 
but incorrect practices.1

The GECM is possible but not recommended 
when all series are stationary
Enns et al. and Grant and Lebo agree on another key point: 
the GECM must be interpreted differently when all the data 
are stationary compared to when they all contain unit roots.

DeBoef and Keele (2008) and Keele et al. (2016) explain 
the equivalence of the GECM (Equation 1 above) to the 
autoregressive distributed lag (ADL) (Equation 2):

 Y Y X Xt t t t t= .0 1 1 0 1 1α α β β+ + + +− − �  (2)

Stationary series require the “stationary rules” for 
Equation 1: (1) α1

*  does not test cointegration; (2) Yt−1 ’s 
hypothesis test evaluates αl1

* 1+  and MacKinnon CVs are 
not used (Bannerjee et al., 1993: 167); and (3) estimates 
must be translated to the ADL framework as α α1

*
11 =+ , 

β β0
*

0= , and β β β1
*

0 1= + . Thus, when αl1
* = 1.00−  with a 

(0,0,0)  series it indicates stationarity – no impact of Yt−1  
on Yt  in the ADL.

We did not find these post-estimation calculations in any 
of our selected readings of the roughly 500 papers that cite 
DeBoef and Keele (2008). Instead, when data are claimed 
to be stationary, the value and significance of αl1

*
 and βl1

*
 

are taken from software output and treated the same as they 
would be using the unit root rules. Typically, this leads to 
overconfidence in rejecting null hypotheses and in finding 
error correction to be occurring.

Thus, Grant and Lebo do not say that the GECM cannot 
be used with stationary data, but argue (Grant and Lebo, 
2016: 4): “…although the autoregressive distributed lag 
(ADL) model is algebraically equivalent to the GECM, the 
reorganization of parameters is not benign and easily leads 
to misinterpretation.” In other work Kelly, Enns, and 
Wohlfarth did not adapt their interpretation of the GECM 
while arguing data are stationary but, with “Don’t Jettison 
the GECM Just Yet,” the authors are now on board, saying 
(EKMW, p. 6): “Thus, we agree with Grant and Lebo that 
when the dependent variable is stationary, the parameteri-
zation of the GECM is more likely than the ADL to lead to 
errors of interpretation.”

This is also progress. DeBoef and Keele (2008) advo-
cate the GECM with stationary data – an early version of 
the paper was entitled “Not Just for Cointegration: Error 
Correction Models with Stationary Data.”2 With all station-
ary series, they argue, one can estimate an error correction 
model (ECM) without discussing cointegration, long-run 
equilibria, or error correction rates. However, in addition to 
interpretation problems, other issues followed as well.

A key misreading of DeBoef and Keele is to conclude 
that the GECM is perfectly flexible so that series of any type 
can be analyzed together within it.3 In particular, DeBoef 
and Keele’s (2008: 199) statement that “…as the ECM is 
useful for stationary and integrated data alike, analysts need 

αl1
*
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not enter debates about unit roots and cointegration to dis-
cuss long-run equilibria and rates of reequilibration” has 
been repeatedly quoted but seldom understood.4 The applied 
literature is peppered with statements such as: “In summary, 
the ECM is a very general model that is easy to implement 
and estimate, does not impose assumptions about cointegra-
tion, and can be applied to both stationary and nonstationary 
data” (Volscho and Kelly, 2012); “The ECM provides a con-
servative empirical test of our argument and a general model 
that is appropriate with both stationary and nonstationary 
data” (Casillas et al., 2011); and “While the use of an ECM 
is often motivated by the presence of a nonstationary time-
series as a dependent variable, our application of this model 
is based on the fact that it is among the most general time-
series models that imposes the fewest restrictions” (Kelly 
and Enns, 2010). Engle and Granger’s (1987) strict rules for 
cointegration were increasingly ignored as the GECM 
became the dominant technique in political science.

Enns et al.’s conclusion that “Although the ADL and 
GECM produce the same information (in different for-
mats), the ADL is less likely to yield errors of interpreta-
tion when Y  is stationary” (Enns et al., 2016: 10) matches 
Grant and Lebo: “…with stationary data, the ADL and 
GECM may be mathematically equivalent but the GECM 
adds complications without adding useful insights” (Grant 
and Lebo, 2016: 27). For example, Casillas et al. (2011) use 
the obviously stationary series Salient Reviews in the 
GECM and report an error correction rate of 126%, pre-
cisely the kind of misinterpretation the ADL can avoid. 
Thus, while all agree on the mathematical facts, from a 
practical standpoint Enns et al. and Grant and Lebo are on 
one side of the issue – recommending against using the 
GECM with stationary data – and DeBoef and Keele are on 
the other.

Point of likely disagreement
On another point agreement is uncertain. Grant and Lebo 
posit that the univariate properties of all series in the GECM 
deserve attention; for example if all the independent varia-
bles are I(1) they must all be cointegrated with the depend-
ent variable (DV). As opposed to Engle and Granger’s 
(1987) two-step ECM or Clarke and Lebo’s (2003) three-
step fractional ECM, the GECM does not allow testing for 
cointegration or measuring error correction between Y  and 
a subset of X s.5

For example, the cointegration of unit root series Y  and 
X  in Equation 1 makes the component ( 1Yt−  + Xt−1)  
jointly stationary and, along with ∆Yt  and ∆ Xt , all com-
ponents will then be stationary and inferences can be care-
fully drawn. Adding an I(1) X 2  means adding two 
predictors, ∆ X t2,  and X t2, 1−  but if X 2  is not jointly coin-
tegrated with Y  and X  the model creates problems due to 
unresolved autocorrelation in X t2, 1− . Thus, even if cointe-
gration exists between Y  and X, researchers need to be 

more concerned about the properties of other X s. Enns 
et al. (2016: 9) do not seem worried, for example, defend-
ing Casillas et al.’s (2011) table 1 and table 2 (model 1) 
even though both include a Social Forces variable that is 
not significant in either lags or differences.6 More gener-
ally, the consequences of additional non-stationary X s 
that are not cointegrated are not well understood but are 
often included in GECM applications. Next we turn to 
areas of more explicit disagreement.

Points of disagreement
To review, all agree that a bivariate GECM estimates 
parameters α0, α1

* , β0
* , and β1

*  and that with unit root data 
we evaluate each “as is” but use MacKinnon CVs (Ericsson 
and MacKinnon, 2002) for the ECM parameter, α1

*. Also, 
with stationary data we need to switch the rules: 
β β β1

*
0 1= +  of the ADL, α1

*  is not a cointegration test, 
and α1

* 1+  relies on the t -distribution.
Our views deviate as we confront the stark choice about 

which rules to apply, especially with respect to the error 
correction coefficient. When should we switch from one set 
of rules to the other? Enns et al. claim that it is possible to 
unambiguously choose rules based on results from aug-
mented Dickey–Fuller (ADF) tests: “If the ADF rejects the 
null of a unit root, we do not use the GECM to test for 
cointegration” (Enns et al., 2016: 4).

However, DF tests have a null hypothesis of a unit root 
so that positive evidence is required to classify the series as 
not I(1). As Enns et al. (2016: 4) admit “it is well known 
that ADF tests are underpowered against the alternative 
hypothesis of stationarity” meaning that many series incor-
rectly show evidence of a unit root. Indeed, the ADF test is 
sensitive to sample size, trends, and bounds. Fractionally 
integrated, near-integrated, autoregressive, and other sta-
tionary series often fail to reject the null in the ADF test. 
ADF tests can also be affected by trending, periodicity, and 
heteroskedasticity.

Falsely classifying series as I(1) means being too quick 
to favor the GECM over the ADL, to apply the wrong rules 
to the GECM, and to think that lower values of α1

*  indicate 
error correction between series and not simply the station-
ary tendencies of Y .

Figures 1(a), 1(b), and 1(c) show these problems for the 
GECM. We generated 60,000 pairs of unrelated time series 
– 10,000 each for T = 50, T = 100, and T = 250 while vary-
ing ρ  and then again while varying d . Figure 1(a) shows, 
for each T, 1,000 pairs of simulated autoregressive (ρ ) 
series for each of (0,0,0) to (0.9,0,0 ) in increments of 0.1. 
Figure 1(b) shows 1,000 pairs of fractionally integrated 
series simulated as (0,0,0) up to (0,0.9,0) increasing d  in 
increments of 0.1. Thus, none of these series contain a unit 
root.7

For both Figures 1(a) and 1(b), each shape shows the 
average value of 1,000 ADF test statistics of Y  with vertical 
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whiskers showing coverage of 950 of the 1,000 statistics. 
The horizontal line is the 0.05-level CV above which are 
false negatives – a failure to reject the I(1) null with data that 
are not I(1). The many instances above the line indicate that 
the test is drastically underpowered.8

On the X -axis is the average estimated αl1
*

 from the 
GECM. As ρ  or d  moves away from I(1) the ECM value 
drops lower, seemingly – but not actually – indicating error 
correction.

The figures’ results should be striking, most especially 
for short time series. Unrelated series simulated as 
( )0,0.5,0  with T = 50 have an average ECM value of -0.53 
while failing to reject the ADF null 61.1% of the time. 

Series that are ( )0.5,0,0  with T = 50 have an average ECM 
value of -0.56 but appear to be unit roots in the DF test 
36.9% of the time.9 When d = 0.8  and T = 50 – about where 
many yearly public opinion series fall – the ADF test has 
false negatives at a rate of 76.1%. In these cases we would 
find an average ECM of -0.26 and be well on our way to 
touting error correction. With longer series there are still 
problems.

Of course, the high rate of false negatives on the ADF test 
would not be as problematic if the ECM parameter testing 
for cointegration ( )α1

*  did not reach statistical significance. 
Proponents of the GECM like Enns et al. might suggest that 
using MacKinnon CVs for the ECM parameter would 
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prevent us from finding false evidence of cointegration in 
such a scenario. Unfortunately, MacKinnon CVs are not a 
panacea here, since they rely on the assumption of unit root 
data and are not extreme enough to prevent falsely finding 
error correction when series are not unit roots.

Figure 1(c) shows this. Each cell reports the proportion 
of times that the ADF test fails to reject a false null hypoth-
esis of a unit root and the ECM parameter is significant 
beyond MacKinnon CVs. For example, with series created 
as (0.6,0,0)  and T = 50 there is a 29.9% chance of conclud-
ing both that Y  has a unit root and that it is cointegrated 
with X . With series created as (0,0.6,0)  and T = 100 the 
rate is 43.4% for finding cointegration when following the 
exact procedures that Enns et al. advocate. The problems are 
noticeably more pronounced with data we create as fraction-
ally integrated compared to autoregressive. Additionally, 
shorter time series are much more problematic – at T = 250 
the problems remain for fractionally integrated series with 
higher values of d  but disappear when there is only autore-
gression and the ADF test is more powerful.

To reiterate, not a single series in Figures 1(a), 1(b), or 1(c) 
contains a unit root. Thus, the GECM’s unit root rules should 
not be used for any of them.10 Still, Enns et al.’s favored ADF 

test will incorrectly conclude that many are I(1). In fact, with 
short series the ADF test gives us false negatives a majority of 
the time and even 15% of the time when series are complete 
white noise, that is, ( )0,0,0 . Nevertheless, Enns et al. would 
advise applying the unit root rules and MacKinnon CVs to 
those ADF false negatives without realizing that much of the 
apparent error correction – see αl1

*  decreasing from right to 
left – is due to the distance the series is from actually being 
I(1).11 In all, the figures show how easy it is to have faulty 
evidence of both a unit root and error correction.

Enns et al. do not confront these problems. Instead, they 
force non-unit root data into the “all unit root” case and rely 
on the error correction parameter ( )α1

*  for key inferences. 
Enns et al. interpret the GECM’s results in the same way 
whether their series have “evidence of a unit root” or are 
actually simulated as unit roots.12 In reality, data are messy 
and many non-unit root series will provide evidence of 
being I(1). So, yes, understanding α1

*  with data simulated 
to be exact unit roots is straightforward but this does not 
mean we can reliably interpret the coefficient when using 
real world time series with unknowable properties.

If we could identify with certainty I(1) series we could 
know when to apply the unit root rules but, as Enns et al. 

Figure 1. (a) With ρ <1, augmented Dickey–Fuller false negatives are rampant and occur with downward biased α1
* .

Note: each data point represents 1,000 simulations of a bivariate general error correction model with a particular autoregressive parameter. All 
points above the horizontal line represent Type II errors (false negatives) with the Dickey–Fuller unit root test.
(b) With d <1, augmented Dickey–Fuller false negatives are rampant and occur with downward biased α1

* .
Note: each data point represents 1,000 simulations of a bivariate general error correction model with a particular fractional integration parameter. 
All points above the horizontal line represent Type II errors (false negatives) with the Dickey–Fuller unit root test.
(c) Proportion of false positives on α1

*  using MacKinnon critical values coinciding with augmented Dickey–Fuller false negatives; that 
is, falsely finding cointegration.
Note: based on the same simulations as Figures 1(a) and 1(b). Each cell represents 1,000 simulations of a bivariate general error correction model. 
The data are constructed to hold a range of properties for variation in the autoregressive and fractional integration parameters. The percentages 
indicate the proportion of simulations where the Dickey–Fuller unit root test failed to reject and the error correction model parameter (α1

* ) is 
significant based on MacKinnon critical values.
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correctly point out, “It may be that with short time series, 
we cannot draw firm conclusions about the time series 
properties of variables” (Enns et al., 2016: 9). Given that, 
Enns et al. should not choose rules based on a weak test and 
should not focus on a parameter whose interpretability gets 
muddier as data deviate from exactly I(1). Doing so gam-
bles with inferences since if the data are not truly I(1) then 
α1

*  does not mean what they think it means.
Elsewhere, Enns et al. are explicit about extending the 

unit root rules to data that are not I(1). In their Case 4, Enns 
et al. apply them to near-integrated data – where ρ  is close 
to but not equal to one in yt  = ρ * 1yt−  + �t .13 Such series 
may provide evidence of a unit root but are technically 
mean stationary. How do we choose which set of rules to 
use? Banerjee et al. say in the context of ECMs: “In finite 
samples the differences between, for example, an AR(1) 
with parameter 1.0 and an AR(1) with parameter 0.99 is a 
difference of degree rather than kind” (Banerjee et al., 
1993: 225). So perhaps we should not switch rules when 
ρ = 0.99  just because the series is technically stationary.

But the unit root rules are not exactly correct when 
ρ = 0.99  either. As Figures 1(a), 1(b), and Grant and Lebo’s 
(2016) table 4 show, as data move away from unit roots there 
is a steady progression from 0 to -1 in the estimation of αl1

*
. 

This means that the correct critical values are even more 
extreme than MacKinnon’s values. We could derive correct 
idiosyncratic CVsc if we could simulate data with the exact 
same properties but this is a practical impossibility.

Thus, when do we switch from one set of rules to the 
other? There is no magic threshold as a series goes from 
ρ = 1.00  to ρ = 0.99  or from ρ = 0.90  to ρ = 0.89  where 
on one side α1

*  is a cointegration test and the error correction 
rate and on the other side it is neither. At some point an ADF 
test statistic will tip from non-significant to significant but 
this cannot tell us the extent to which α1

*  speaks to error cor-
rection. Using more extreme MacKinnon CVs prevents many 
false positives in Enns et al.’s simulation exercises but it does 
not mean they are correct when data are not unit roots.14

Enns et al. oversimplify again when they use unit root 
rules for fractionally integrated (FI) series where 0 < <1d .15 
Unsurprisingly, they find that many spurious results can be 
avoided by applying MacKinnon CVs to Grant and Lebo’s 
(2016) FI simulations and they say: “Again we find, how-
ever, that the different conclusions can be resolved by fol-
lowing Grant and Lebo’s advice to test for cointegration with 
the correct critical values” (Enns et al., 2016: 7).

This seems disingenuous. Neither Grant and Lebo (2016), 
Ericsson and MacKinnon (2002), nor any other source we 
know of has argued that MacKinnon CVs are appropriate 
except with exact I(1) data. Enns et al. provide no justifica-
tion for expanding when these values should be used – to NI 
data, FI data, or any other type. Yes, Enns et al.’s advice pre-
vents some spurious findings but that does not mean that 
these are the correct critical values. As Grant and Lebo’s 
(2016) figure 4 shows, α1

* ’s distribution quickly gets even 

more extreme than MacKinnon’s distribution as d  decreases 
from 1. Unless we simulate data ourselves, we cannot be sure 
of the exact ( , , )p d q  models which means we cannot calcu-
late exactly what the idiosyncratic CVs are. Grant and Lebo 
point out that “Even if we could pin down the correct critical 
values, the meaning of the ECM coefficient has been lost. 
Ultimately, the value of α1  tells us more about the level of 
memory in Yt  than about Yt ’s relationship to independent 
variables in the model” (Grant and Lebo, 2016).

In sum, many series that do not have unit roots will test 
as though they do. Also, neither fractionally integrated nor 
near-integrated series have unit roots and thus do not work 
for the CVs set out in Ericsson and MacKinnon (2002).16 
Treating such series as I(1) in the GECM means α1

*  will 
move downwards as the series deviate from I(1) – too often 
surpassing the MacKinnon CVs theat Enns et al. would like 
to use more liberally. Researchers that mistakenly treat 
non-I(1) series as I(1) will misstate the meaning of α1

*. 
Thus, Enns et al.’s advice to apply MacKinnon CVs to esti-
mates of α1

*  when Y  is fractionally integrated, near-inte-
grated, or fails to reject the ADF null invites incorrect 
claims of cointegration and error correction.

The GECM in practice when we are 
too quick to find unit roots
Next we consider the practical implications of squeezing 
non-unit root data into the unit root case for the GECM. To 
begin, recall Murray (1994)’s story that a unit root variable 
is like a drunk out for a walk – the next step is random but 
his current location is the sum of the steps taken thus far. 
Cointegration is akin to the drunk taking a leashed dog 
along for the walk. The two may be on random walks but 
are tethered so that any distance between them is eventually 
closed (error correction) and in the long run tends to zero.

What data do economists study for error correction? 
The textbook example in Stock and Watson (2011) uses 
one-year and three-month treasury bill rates set by the fed-
eral reserve, shown in Figure 2. These are unit roots; unless 
the US Federal Reserve decides to change them – a shock 
in the error term – interest rates at time t  are what they 
were at t −1. The relationship between the rates appears 
very close and the GECM indeed shows cointegration with 
α1

* = 0.52− . That is, 52% of a gap between the series at t  
is closed at t +1  and 52% of the remaining gap is closed 
at t + 2  and so on. How do political scientists’ stories 
compare?

Another look at Kelly and Enns (2010)
Enns et al. (2016) defend Kelly and Enns’s (2010) results 
so long as the unit root rules are applied. Kelly and Enns’s 
(2010) table 1 model 4 shows the GECM results with 
Welfare Attitudes as the DV and Policy Liberlism and the 
Gini index as independent variables. With just T = 33 it is 
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unsurprising that ADF tests on all three variables fail to 
reject the null of a unit root.17 Thus, the data surpass Enns 
et al. threshold to apply the unit root rules.18

Figure 3 shows these series. The solid line plots Y , 
Welfare Attitudes, and the two dotted lines are the X s.19 
With T = 33, rejecting the unit root hypothesis of the ADF 
test is very unlikely and the mean-reverting tendencies of 
Y  are affecting the estimation of αl1

*
. By classifying the 

series as unit roots, Enns et al. call a significant αl1
*

 evi-
dence of cointegration – that is, the series in Figure 3 are 
tethered together. In fact, Enns et al. insist Kelly and Enns’s 

reported error correction rate of 55% is correct. That is, 
Kelly and Enns’s claims in their American Journal of 
Political Science article rest on our believing that the error 
correction relationship in Figure 3 is stronger than in 
Figure 2.20 Rather, the figures should be convincing that 
Enns et al. are misinterpreting their results.

Elsewhere, Enns et al. (2016: 4) specifically defend 
models in Kelly and Enns (2010) and say “Yet, looking at 
Kelly and Enns’ most parsimonious analysis (Table 1, col-
umn 2) we find clear evidence of cointegration.” The 
three series are graphed in Figure 4 with Public Mood 

Figure 2. Stock and Watson’s (2011) cointegration example: three-month and one-year T-bill rates, error correction rate = 52%.

Figure 3. Kelly and Enns’s (2010) data in their table 1 model 4; Kelly and Enns, and Enns et al. claim that the error correction rate 
is 55%.
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Liberalism (the solid line) as the DV. It is possible that 
cointegration is hard to see when more than two series are 
involved but making the comparison between Kelly and 
Enns’s data and the classic example in Figure 2 it seems 
more likely that the error correction rate is overstated by 
Kelly and Enns – Figure 4 does not look like a drunk and 
her dog(s).

Also, compare Kelly and Enns’s (2010) models 1 and 2 
in their table 1 which show the same error correction rate 
(αl1

* = 0.25− , standard error =0.07). The t -statistics of the 
six covariates in model 1 are 1.48, -1.85, -0.01, 0.14, -0.64, 
and -0.46. Why is αl1

*
 exactly the same in the two models 

– one of which has no X s that matter? Because the models 
have the same Y  and when they interpret αl1

*
 Enns et al. 

(2016) are confusing Y ’s mean reverting behavior with 
error correction between Y  and X .21 Falsely inferring 
error correction is an easy mistake to make and shows the 
risks of relying on inferences drawn from αl1

*
. Researchers 

are on safer ground when they concentrate on inferences 
drawn from the β s and long-run multipliers.

Another look at Casillas et al. (2011)
Next, we look at Enns et al.’s defense of Casillas et al. 
(2011). Casillas et al. use three DVs: Salient Reviews, Non-
Salient Reviews, and All Reviews decided in a liberal 
direction at the US Supreme Court. Enns et al. say:

“We agree with Grant and Lebo that Casillas, Enns, and 
Wohlfarth were wrong to interpret the t -statistic on the lagged 
value of salient reversals as evidence of cointegration. This 
series is stationary, […] so cointegration and long-run 
relationships should not have been considered.” (Enns et al., 
2016: note 24)

What Enns et al. miss, however, is that the differences 
between Salient Reviews on the one hand and All Reviews 
and Non-Salient Reviews on the other are ones of degree, 
not category. These variables are computed anew each year 
based on the Court’s decisions, making them very unlikely 
to contain unit roots. However, with T = 45, ADF tests have 
extremely low power in confirming that.

Enns et al. stand by Casillas et al.’s estimates for All Reviews 
( )αl1

* = 0.83−  and Non-Salient Reviews ( ).αl1
* = 0.77−  

Describing their table 1, Casillas et al. say:

“The significant long-run impact of mood on the Court 
suggests that public opinion also has an effect that is distributed 
over future time periods. The error correction rate of 0.83 
indicates the speed at which this long-term effect takes place. 
We expect that 83% of the long-run impact of public mood will 
influence the Court at term t +1  (0.72), an additional 83% of 
the remaining effect will transpire at term t + 2  (0.12), and so 
on until the total long-run effect has been distributed. 
Therefore, the Courts long-term responsiveness to public 
mood occurs rather quickly, as 97% of the total long-run effect 
of public opinion at term t  will be manifested in the justices 
behavior after just two terms.” (Casillas et al., 2011: 80)

This seemingly incontrovertible conclusion (t = –5.33) 
flies in the face of the well-established attitudinal model 
(Segal and Spaeth, 2002) but is based on short data and a 
parameter that is difficult to understand. Figure 5 plots out 
All Reviews and Public Mood. The series look more 
related than Kelly and Enns’s (2010) data and there may 
indeed be a close relationship there. However, Casillas 
et al.’s claim that the error correction rate is 83% implies 
a much faster rate than what is presented in the T-bill 
example above.22 Comparing the figures should make it 

Figure 4. Data from Kelly and Enns’s (2010) table 1 model 2 - relationships are not apparent.
Note: the general error correction model’s estimated error correction rate is –0.25.
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clear that Casillas et al. and Enns et al. are exaggerating 
error correction – their α1

*  estimates may be capturing 
mean reversion or, perhaps, both mean reversion and the 
long run effects of X.

It is impossible to know the extent to which a negative 
coefficient on Yt−1  simply indicates that if the level of the 
series was high (or low) in the last period ∆Y  will be nega-
tive (or positive) in the present period due to mean rever-
sion. A significant αl1

*
 can imply different things but it is 

extremely difficult to distinguish among them. Without 
complete confidence that the DV has a unit root, judging 
the extent of error correction in αl1

*
 is unknowable with 

current GECM techniques. Even MacKinnon CVs are not 
extreme enough to prevent Type I errors.

To demonstrate, Figure 6 begins with data from Grant 
and Lebo’s (2016) simulations of fractionally integrated 
data and shows decreasing values of d  associated with 
increased values and t -statistics for αl1

*
. Of the many dots, 

only those on the extreme right of each panel contain I(1) 
DVs but, as shown in Figure 1(b), many others would pro-
vide I(1) evidence.

Figure 6 also includes αl1
*

 estimates from bivariate 
GECM models for Casillas et al.’s DVs and Public Mood. 
Enns et al. classify Salient Reviews as stationary and admit 
the unit root rules should not be applied. But, with ADF 
results that Non-Salient Reviews and All Reviews are unit 
roots, they apply the unit root rules and find long-run rela-
tionships. However, the low αl1

*
 value and t -statistics are 

due – at least to some extent – to Y ’s stationary tenden-
cies. Grant and Lebo estimate d = 0.62  for both – over 3 
standard errors below one.23 Overlaying the Casillas et al. 
results by the d  estimates shows the findings fall exactly 

where they would be if no relationship exists between X  
and Y .

In all, Enns et al.’s (2016: 2) statement: “…we recon-
sider two of the articles that Grant and Lebo critiqued 
(CEW, K&E [Casillas et al. and Kelly and Enns]) and we 
demonstrate that a correct understanding of the GECM 
indicates that the methods and findings of these two arti-
cles are sound,” could only be true if the weakest rela-
tionship among our Figures 2, 3, 4, and 5 is Figure 2’s 
textbook example of cointegration. Enns et al’s blanket 
statement also misdirects from the fact that they only 
defend those papers’ least outrageous findings.

In fact, Casillas et al. (2011) misinterpret αl1
*

 and have 
no real evidence that “the public mood directly constrains 
the justices’ behavior and the Court’s policy outcomes, 
even after controlling for the social forces that influence 
the public and the Supreme Court.” The long run equilib-
rium the Supreme Court series is reverting to may just be 
its own mean, not the public’s mood. Finally, even if the 
independent variables are determining αl1

*
, Casillas et al.’s 

approach does not allow them to isolate which x  is con-
straining the Court – the Court’s ideology is an equally 
likely explanation.

In practice, if you are using the unit root rules in the 
GECM, you can only easily interpret αl1

*
 if you are certain 

the DV has a unit root. This is a near impossible task unless 
one is simulating the data, the time series is quite long, or 
one has a deep understanding of the data generating pro-
cess. Given near certain uncertainty, it is best to either find 
a different model or to rely on other inferences the model 
provides.

Figure 5. Casillas et al.’s (2011) data for their table 1, error correction rate claimed to be 83%.



10 Research and Politics 

Further thoughts on simulations and 
replications

Enns et al. (2016: 2) say: “Although our conclusions dif-
fer greatly from Grant and Lebo’s recommendations, we 
do not expect our findings to be controversial. Most of our 
evidence comes directly from Grant and Lebo’s own sim-
ulations.” This statement deserves more attention than 
there is space for here but the essential point is that Enns 
et al.’s widespread promotion of MacKinnon CVs is an 
easy way to reduce Type I error rates in simulations or in 
practice but these are not the right CVs except when data 
truly have a unit root. When d  or ρ  is very close to one, 
MacKinnon CVs may be close but they are not correct. 
When d  or ρ  are further from 1 tests often mistakenly 
find unit roots.

The properties of the series Enns et al use – in Kelly and 
Enns, Casillas et al., and elsewhere – do not match the 
properties of the data they simulate. The consequences of 
being wrong are to get nonsense results, for example, insist-
ing that 97% of the disequilibrium between Supreme Court 
decisions and public mood is corrected in two years.

Also, Enns et al. cast doubt when they say Grant and 
Lebo misused the GECM by replacing the independent 
variables of published work with shark attacks, tornado 

fatalities, other nonsense series, and simulated data. Enns 
et al. are correct that in Grant and Lebo’s replications they 
did not follow their own advice to set aside regression 
results where there is no evidence of cointegration. But, of 
course, that was precisely the point: Grant and Lebo are 
demonstrating the mistakes made when GECM results are 
misinterpreted as was done by Kelly and Enns, Casillas 
et al., and the many published GECM studies.

That is, Grant and Lebo show that if one mimics the 
methods and interpretation of papers like Casillas et al. 
(2011) the independent variables do not really matter in 
terms of getting significant results on the error correction 
parameter.24 Enns et al. are correct, for instance, that Grant 
and Lebo’s table 10 replication of Casillas et al. would not 
show shark attacks and beef consumption to be related to 
Supreme Court decisions if Grant and Lebo had improved 
upon Casillas et al.’s methods. Nevertheless, it is notable 
that with both Kelly and Enns’s (2010) and Ura and Ellis’s 
(2012) data, some relationships – Grant and Lebo’s table 13 
(Republican Mood) and Grant and Lebo’s table E.13 model 
3, respectively – between the DVs and variables such as 
Onion Acreage are strong enough to surpass MacKinnon 
CVs and conclude cointegration exists. Since the data are 
unlikely to have unit roots, MacKinnon CVs still are not 
enough to prevent spurious findings of error correction.

Figure 6. Casillas et al.’s (2011) error correction model (ECM) estimates are where they would be if no error correction was 
occurring.
Note: the ECM coefficients for Casillas et al.’s three dependent variables (DVs) are plotted alongside the simulated data from Grant and Lebo’s 
(2016) figure 3. The strength of error correction is a clear function of the level of integration in both the simulated data and all three of Casillas 
et al.’s DVs.
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Conclusion
We show that using the unit root rules with series that sim-
ply pass the DF test is not enough to avoid overstating find-
ings of error correction. Especially with short time series it 
is too easy to fail to reject the DF null of non-stationarity 
and then misunderstand the error correction coefficient. 
This is a principal reason why the applied literature is 
replete with incorrect GECM findings and why Grant and 
Lebo recommend against using the model except in ideal 
circumstances.

Enns et al.’s “Don’t Jettison the GECM” tries to clarify 
how to correctly interpret the ECM coefficient but inad-
vertently shows that while the GECM is viewed as flexible 
and easy to use it is, in fact, inflexible and extremely easy 
to misuse. Enns et al. agree that the GECM can work when 
data are unit roots, cointegrated, and special critical values 
are used but fail to realize they cannot simply extend those 
rules to non-unit root data and obtain reliable conclusions.

Indeed, Enns et al. advocate applying the unit root rules 
to data they know to not have unit roots – autoregressive 
and fractionally integrated – as well as other series that 
merely show evidence of a unit root. Moreover, they make 
their decisions based on the much maligned DF test. 
Although they say (Enns et al., 2016: 2): “Most of our evi-
dence comes directly from Grant and Lebo’s own simula-
tions” Enns et al. do so while roughly doubling the CVs 
without proving the practice is correct. Many spurious find-
ings are eliminated this way but MacKinnon CVs and the 
unit root rules are not enough to overcome the interpreta-
tion problems on α1

*  when data are not I(1).
Grant and Lebo (2016: 27) say: “Error correction 

between variables is a very close relationship that should be 
obvious in a simple glance at the data.” The graphs of data 
we provide here should make it clear that Enns et al.’s 
claims to have found long run equilibria between political 
time series in Kelly and Enns (2010) and Casillas et al. 
(2011) come from the misuse of the method, not the data. 
Finding long run equilibria across decades of data makes 
for a story that is interesting but that hinges on a parameter 
that is often inscrutable. If researchers insist on employing 
the GECM with data that may not be unit roots they need to 
focus on the model’s other parameters.
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Notes
 1. To our knowledge, political scientists had not used 

MacKinnon critical values with the general error correction 
model before Grant and Lebo.

 2. DeBoef and Keele argued that since the autoregressive 
distributed lag (ADL) and general error correction model 
(GECM) are simply reparameterizations of each other and 
since the ADL works with stationary data, then the GECM 
must as well.

 3. The misreading of DeBoef and Keele has also led to reduced 
emphasis on the univariate properties of data. This has 
always been a crucial step in time series analysis but much 
of the general error correction model literature ignores the 
question of stationarity of data or gives it short shrift.

 4. See Grant and Lebo’s (2016) appendix F for misinterpreta-
tions of this line in the applied time series literature.

 5. For example, Lebo and Young (2009) test for cointegration 
between vote intentions and leadership approval ratings for 
each of Britain’s three major parties. Two- and three-step 
approaches model error correction between the two without 
specifying it between vote intentions and economic indi-
ces. Lebo et al., (2007) estimate error correction between 
Democratic unity, Republican unity, and Democratic size in 
Congress but leave other independent variables for the full 
regression model.

 6. Social Forces is part of an instrumental variable analysis 
where the instrument tests are not passed.

 7. We do not include analyses for more complicated autoregres-
sive fractionally integrated moving average processes with 
p  and q  parameters but such series are possible and would 

add further confusion to understanding augmented Dickey–
Fuller test results.

 8. With true unit roots the Dickey–Fuller test also has problems. 
When we simulate I(1) data with sample sizes of 50, 100, and 
250 we incorrectly reject the null hypothesis 14.3%, 17.1%, 
and 19.2% of the time, respectively.

 9. Since there are many versions of the augmented Dickey–
Fuller test an over-zealous researcher might try several in 
search of one that provides evidence of a unit root. Thus, in 
practice, the probabilities of a false negative across the range 
of Dickey–Fuller tests are actually much higher.

10. Although the consequences of making this mistake when ρ  
or d  are nearly 1 might be minimal (DeBoef and Granato, 
1999).

11. For example, Grant and Lebo (2016) tested Casillas et al.’s 
(2011) All Reviews as (0,0.62,0) . Following Figure 1(a), 
such series fail to reject the null hypothesis 69.3% of the time 
and give an average error correction model value of -0.42 
even with an unrelated independent variable.

12. The data in Grant and Lebo (2016) and Enns et al.’s (2016) 
Case 1 simulations are unit roots. Reexamining Casillas 
et al.’s (2011) data Enns et al. (2016: 9) report: “Yet, the bal-
ance of evidence from the various tests suggest that these 
series contain a unit root.”

13. Enns et al. discuss near-integrated series as being common 
in political science but this is not supported by the applied 
literature.

14. Grant and Lebo (2016: 15) say: “Second, although using 
MacKinnon CVs with near-integrated data would limit the 
rate of spurious regressions (see Section G.1 of Supplement), 
this cannot be recommended since the decision of when to 
switch to MacKinnon values with stationary data will be 
an arbitrary one. The MacKinnon values are recommended 
based on the unit-root or not distinction. Researchers cannot 
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simultaneously argue that data are stationary while using 
unit-root critical values. Spurious regressions appear, for 
example, when ρ  = 0.75 and the correct critical values in 
that case are derived from neither the MacKinnon nor the 
normal distribution – they are unique to the particular data 
being used.”

15. Esarey (2016) sums up his contribution to the Political 
Analysis symposium with: “Based on these conclusions, it 
appears that ADL/ECM models are very useful for recov-
ering the immediate impact of x on y, despite fractional 
integration. The results for long-run impacts are not quite 
as robust: these impacts are likely to be incorrectly esti-
mated by an ADL/ECM run on fractionally integrated data.” 
Esarey’s simulations use only data where 0 < < 0.5d . When 
1.0 < < 0.5d  (where studies find many political time series 
(Lebo et al., 2000)) the problems of interpreting α1

*  will 
worsen. Helgason (2016) finds fractional integration meth-
ods to perform as well as or better than the general error cor-
rection model when series are characterized as (0, ,0)d  and 
that long-run effects are better investigated using FI methods 
even with samples as small as T = 50.

16. As DeBoef and Granato (1997: 619) say: “both (near and 
fractionally integrated data) make characterizing the nature 
of our data more difficult by blurring the knife-edge distinc-
tions between integrated and stationary processes.”

17. The 5% critical value (CV) is –2.978. Welfare test statistics 
are –1.879 (0 lags), –2.046 (1 lag), –2.005 (2 lags); the Gini 
index test statistics are 0.017 (0 lags), 0.537 (1 lag), 0.821 (2 
lags), –2.443 (2 lags and trend with CV = –3.498); and Policy 
Liberalism test statistics are 0.010 (0 lags), –0.929 (1 lag), 
–1.337 (2 lags).

18. The construction of public opinion time series such as 
Welfare Attitudes make them unlikely to be I(1). The value 
at t  may be highly correlated with t −1  but values are gen-
erated anew at each time point and do not exhibit random 
walk behavior. That is, we should not believe that absent 
some shock Yt  is exactly equal to Yt−1 . Studies have found 
series like these to be fractionally integrated (see, e.g., Box-
Steffensmeier and Smith, 1996; Box-Steffensmeier et al., 
2004; Byers et al., 2000; Gil-Alana, 2003; Lebo, 2008; Lebo 
and Cassino, 2007).

19. The general error correction model does not allow us to spec-
ify which X  we think Y  is error correcting with so it could 
be that Kelly and Enns (2010) think Welfare is cointegrated 
with the Gini coefficient, Policy Liberalism, or both. If all the 
variables are I(1) they must all be cointegrated or the model 
is misspecified.

20. The 5% MacKinnon critical value (CV) for T = 35 and 2 
Xs  is –3.613 and the test statistic on Kelly and Enns’s 

(2010) error correction model is –3.46. Enns et al. might 
report this as evidence of cointegration at the 0.1 level or 
they might say the lack of cointegration means the model 
should be discarded. In any event, the MacKinnon CVs are 
not appropriate.

21. Kelly and Enns’s (2010) four models in their table 2 report 
error correction rates of –0.45, –0.46, –0.58, and –0.57 but 
these might vary based simply on the persistence of the 
dependent variables.

22. For the data in Figure 2 to correct 97% of the distance 
between the series it would take 5 periods, compared to the 2 

periods described by Casillas et al. (2011) for gaps between 
All Reviews and Public Mood.

23. Even if Grant and Lebo’s d  estimates are off a bit (Grant, 
2015; Lebo and Weber, 2015) it is implausible to think the 
Supreme Court’s percentage of liberal decisions this year 
begins with last year’s percentage and adds this year’s 
shocks. The series does not have a unit root.

24. In their appendix 3 Enns et al. (2016) complain that Grant and 
Lebo simulate only the independent variables in their tables 
E.11, E.12, and E.13 and argue that: “If one (or more) series 
do not vary across simulations, valid inferences cannot be 
made.” Grant and Lebo’s point is that the univariate properties 
of a dependent variable (DV) can lead to problematic results. 
If regressing the DV on simulated data and nonsense series 
like shark attacks leads to many Type I errors, the point is 
supported.
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